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Summary-It is the purpose of the present work to provide information on the four-level orthogonal array 
design and data analysis for the optimization of analytical procedures. In the theoretical part, the 
construction and characteristics of the OA,,(4’) matrix is described in detail, followed by the data analysis 
strategy, in which the significance of the different factors is quantitatively evaluated by an analysis of 
variance (ANOVA) method including per cent contribution, and the difference among four levels for each 
factor is determined by Duncan’s multiple F test. Furthermore, a third-order polynomial model 
representing response surface is established to estimate the effects for the factors with significant influences. 
In the application part, the proposed four-level orthogonal array design and data analysis method were 
applied to optimize polarographic reaction system for phosphorus determination. By conducting 16 
preplanned experiments that span the maximum working range of the system, the best experimental 
conditions for achieving the largest response can be obtained. The expected value for each experimental 
trial calculated by the third-order regression equation established is in good agreement with the 
corresponding experimental value. To confirm the validity of the optimization procedure, additional 
experiments using the recommended conditions were performed. The results demonstrate that satisfactory 
results can be acquired. Therefore, the proposed four-level orthogonal array design as a chemometric 
approach to optimize the polarographic reaction system for phosphorus determination is rather efficient 
and effective. 
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constant item of the polynomial model, where input variable is Qx 
coefficient of the first-order effect for the factor X, where input variable is 4x 
coefficient of the second-order effect for the factor X, where input variable is 4x 
coefficient of the third-order effect for the factor X, where input variable is 4x 
standard error 
function of the Z for factor X. When Z is specified as Z, (level value at level k), & is expressed 

as &k 
Duncan’s coefficient 
degree of freedom 
effect of the factor X, when X is at level k, E, is expressed as E, 
random variable of F distribution; ratio of variance 
difference between the level value at level k and that at level k + 1, where k = 1,2,3. 
number of the experimental trials, i = 1,2,. . ., 16 
number of the observed responses, j = 1,2,. . ., J 
number of the level settings, unless otherwise specified, k = 1,2,3,4 
number of the replicated times for the different experimental trials at the same level setting, 

I= -1,2,3,4 
mean square due to the factor X 
mean square due to error 
per cent contribution 
average of the responses of the replicated experimental trials for a factor at level k, when 

specifying the factor X, r, is expressed as r, 
span between the level means 
sum of squares due to total variance 
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sum of squares due to the factor X 
sum of squares due to error 
purified sum of squares 
shortest significant ranges 
factor of interest 
factor with a significant influence 
individual response 
individual response at the ith row and the jth observation 
average of the responses 
average of the responses at the ith row 
polynomial value including /I,, item 
polynomial value excluding /I,, item 
average of the polynomial value excluding /?a item 
any value between 2x, and Zx, for factor X, when X is at level k, Zx is expressed as Z, 
average of the sum of the Zx, , Zxr, Zx, and Z,, for factor X 

In HCl-Sb(III)--Mo(VI)-ketone medium, PO:-, 
Sb(II1) and Mo(V1) form a ternary heteropoly 
acid, which can be adsorbed on a dropping 
mercury electrode and reduced to a heteropoly 
blue. The electrochemical reaction produces a 
sensitive polarographic absorptive wave (at 
peak potential of -0.41 V us SCE), which were 
widely applied to the determination of phos- 
phorus in sea-water, marine sediments and bio- 
logical tissue.le3 Recently, the optimum 
conditions using this method for phosphorus 
determination was reported by Chen,4 in which 
the so-called one-factor-at-a-time method was 
employed. However, it is nowadays commonly 
recognized that the one-factor-at-a-time method 
is often unreliable and prone to obtaining false 
optimum. >‘As an illustration, let us consider an 
analytical method in which several factors need 
to be optimized. In the case of one-factor-at-a- 
time method, all factors except one are kept 
constant, that factor is varied, and the level 
setting at which it yields the optimum response 
is ascertained. This procedure is then repeated 
as required for all other factors. However, re- 
gardless of which factor being studied, the opti- 
mum level value obtained for such experiments 
is true only if those other conditions are kept 
identical. Such requirements might be imposs- 
ible to achieve. Thus, it is desirable that the 
parameters used be optimized by means of 
chemometric approach. 

We report the use of four-level orthogonal 
array design as a means of optimizing the 
medium compositions of the polarographic re- 
action system for phosphorus determination in 
the present work. As a chemometric approach, 
orthogonal array design with different level 
settings has been introduced and applied in our 
previous works.“” The precursor of this 
method was the Latin square design, which was 
based on the Latin square and Graeco-Latin 

square.‘* Probably Rao was the first to develop 
a general theory of orthogonal array design,‘3-‘s 
though the term ‘orthogonal array’ was first 
coined by Bose and Bush in 1952.16 However, it 
did not capture the imagination of English- 
speaking researchers until this method was suc- 
cessfully applied to engineering areas for quality 
control by G. Taguchi, a Japanese engineer.” 
For this reason, in western countries, orthog- 
onal array design is often referred to as Taguchi 
design and/or method. ‘8-26 However, it should 
be pointed out that the method of application of 
orthogonal array design have been indepen- 
dently put forward and developed in China for 
a long time and a large number of Chinese 
publications are available.27J’ In addition, in 
1991, Kacker et al. critically pointed out that 
Taguchi’s orthogonal arrays are classical de- 
signs of experiments. 32*33 Nevertheless, the up- 
surge of interest in Taguchi’s work has led to 
orthogonal array design being widely applied to 
engineering areas in the United States and 
United Kingdom since their introduction in the 
early 1980s and the mid- 198Os, respectively. ‘624 

THEORETICAL 

Matrix 

For any orthogonal array design, a matrix, 
which consists of columns and rows, with vari- 
ous numbers at the intersections of each column 
and row, must be constructed. Table 1 displays 
an 0A16(45) matrix. The constructing method 
has been given in Ref. 11. This is a four-level 
orthogonal array matrix which is made up of 
five columns and 16 rows. Each column rep- 
resents a factor, which is an independent vari- 
able, and each row represents an experimental 
trial. The numbers at the intersections indicate 
the level settings that apply to the factors for the 
experimental trials. From this matrix it can be 
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Table I. The OA,,(4s) matrix associated with the analytical results 

Column No. Experimental Polynomial 

1 2 3 4 5 y+SD(n=3) ya/* 
9t (l-it) 
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6.36 & 0.37 -5.84 6.43 -0.07 
10.28 * 0.58 -2.23 10.04 0.24 
9.69 f 0.49 -2.59 9.68 0.01 
5.21 f 0.21 -6.90 5.37 -0.16 

12.63 & 0.72 0.50 12.77 -0.14 
11.49 f 0.49 -0.77 11.50 -0.01 
8.08 4 0.52 -4.45 7.82 0.26 
8.92 f 0.63 -3.24 9.03 -0.11 

10.76 4 0.56 - 1.78 10.49 0.27 
8.41 f 0.48 -3.77 8.50 -0.09 
9.05 f 0.35 -3.05 9.22 -0.17 
7.81 f 0.27 -4.48 7.79 0.02 
7.06 f. 0.38 -5.24 7.03 0.03 
8.48 f 0.47 -3.63 8.64 -0.16 

11.90 & 0.58 -0.23 12.04 -0.14 
7.82 f 0.39 -4.62 7.65 0.17 

rt 7.88 9.20 8.68 7.68 8.90 
‘2 10.28 9.66 10.66 8.83 9.24 u&SD=9.00&2.04 
3 9.01 9.68 9.46 9.64 9.01 
r4 8.82 7.44 7.19 9.84 8.84 J _t SD = - 3.27 + 2.04 

E, -1.92 -0.67 -1.62 -1.63 -0.24 ~~SD=9.00~2.04 
E2 0.48 -0.18 0.34 -0.47 0.09 
E3 -0.80 -0.16 -0.86 0.35 -0.15 P-p*SD=0.00+0.16 
Ed -0.96 -2.39 -3.14 0.55 -0.34 

*Polynomial values excluding PO item. 
tPolynomia1 values including /I,, item. 

noted that each of five columns is varied over 
four level settings, each level setting repeats four 
times, Bnd thus a total of 4 x 4 = 16 experimen- 
tal trials are necessary for each column. Fur- 
thermore, in any two columns, the horizontal 
combinations of any two level numbers appear 
at the same number of times. That is, each 
combination of the 16 ordered pairs (1, I), (1,2), 

(1,3), (194); (2, l), (2,2), (2,3), (294); (3, 1), 
(3,2), (3,3), (3,4) and (4, l), (4,2), (4,3), (4,4) 
appears exactly once. Thus when the four level 
numbers of a column are at level 1, for any other 
columns, the corresponding level numbers are at 
level 1,2,3 and 4, respectively. Similar cases can 
be seen when the four level numbers of this 
column are at other three level settings. The 
above features of the OA,,(49 matrix provide 
the orthogonality among all the five columns. 
Orthogonality means that when the effect for 
the factor X is calculated the influence of the 
factors except for factor X cancel out, and thus 
the effect for the factor assigned to each column 
in the 0A,6(45) matrix can be estimated inde- 
pendently of one another. It can be proven by 
a statistical method which has been described in 
detail elsewhere.” Therefore, in the case of all 
the interactions being neglected, an 0A,6(45) 
design which has only 16 trials can represent the 

possible 4’ = 1,024 combinations. The latter 
number is so large that it is difficult to carry out 
these experiments in practice. 

In fact, the OA,,,(4’) matrix can be viewed as 
a 16/45 = l/64 fraction of a full 4’ factorial 
design. In this matrix, the 16 experimental trials 
provide a total of 15 degrees of freedom for the 
entire experiment, owing to each column having 
four level settings, i.e. three degrees of freedom, 
and thus five columns can be allocated to assign 
factors. In principle, one column can be as- 
signed a factor. However, in practice, if possible, 
it is desirable that at least one column be used 
to assign a dummy factor, in which no variable 
(actual factor) is assigned so as to measure the 
error variance. Otherwise, the error variance 
must come from the repetitions in each exper- 
imental trial. 

Data analysis strategy 

After conducting four-level orthogonal array 
design and obtaining data of responses, for each 
factor, the four level means (r, , rz, r3 and r4) 
must be first calculated. Then, the ANOVA 
method is employed to estimate the effects 
for the factors. Table 2 shows the ANOVA 
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Table 2. ANOVA formulae including per cent contribution for the OA,,(45) matrix 

Sum of Degree of Mean Purified sum Per cent 
Source of square freedom square F of square contribution 
variance (SS) (df) (MS) value (SW (PC) 

4 
X 4J r: +rk-u)’ 3 =x MS, 

ss, - 3Ms_r 
SS’ 

-.-.z x 100% 
k-1 3 MS;,,, ss,, 

Error 16(J-1) 2!.rsE- 
1qJ - 1) 

ss,,,,, - c ss : 

Total 2 (Y,- u)* 16J- 1 
= 

formulae for testing the magnitude of the 
different factors in the 0A,,(4S) matrix. The 
calculation of those sums of squares in Table 2 
has been discussed in detail elsewhere.r”*” 

When implementing ANOVA, a term called 
the ‘purified sum of squares (SS’)‘, which is the 
sum of squares minus the variance due to error, 
and a term called the ‘per cent contribution’ 
which is the relative contribution of SS’ for each 
factor, or error to the total variance can be 
computed. Their calculation formulae have 
been included in Table 2. The per cent contri- 
bution due to factor X provides an estimate of 
the importance of the factor considered, and the 
per cent contribution due to error provides an 
estimate of the adequacy of the experiment 
parameters.ls 

The ANOVA method including Per cent con- 
tribution in Table 2 provides a significant test 
for the different factor effects by comparing 
statistics I;, to F,, which is a critical value at the 
given degrees of freedom and significant level. 
However, it does not specify which of the level 
means is different. Thus, we recommend em- 
ploying the Duncan’s multiple F test34 to com- 
pare the difference among level means for those 
factors with significant effects. In this case, the 
application of Duncan’s multiple F test is briefly 
described as follows: (i) After carrying out 
ANOVA, for the factor with a significant effect, 
the four level means are in order from small to 
large. (ii) According to the degrees of freedom 
for error [16(J - l), refer to Table 21 and the 
spans between the level means (SP), the Dun- 
can’s coefficient ( p) is extracted from Duncan’s 
multiple F test coefficient tables34 at the different 
significant levels. (iii) The shortest significant 
ranges (SSR) are calculated according to the 
following formula: 

(1) 

where 4J represents the number of observations A cm3 ammonium heptamolybate tetrahy- 
in each level. (iv) The difference between two drate solution, B cm3 of potassium antimony 

level means is compared with the corresponding 
SSR, which is calculated by equation (1). If the 
former exceeds the latter, the difference is sig 
nificant at the corresponding significant level. 
Otherwise, it is not significant. 

Furthermore, if one expects to estimate the 
effects for the factors in the model, the following 
polynomial can be established: 

The polynomial model given in equation (2) 
excludes the factors without significant influ- 
ences because the ~nt~bution of the nonsignifi- 
cant factors to responses is trivial and thus 
can be incorporated into the t; item. For the 
assumptions of the above model and the esti- 
mate of the different regression coefficients, refer 
to Appendix A. 

EXPERIMENTAL 

Apparatus and reagents 

A model JP- 1 A oscillopolarographic analyzer 
(China) was used. Dropping mercury electrode 
and saturated calomel electrode (SCE) were 
employed as the working and reference elec- 
trodes, respectively. The auxiliary electrode was 
made of platinum. 

Standard stock phosphorus solution (1000 
pgfcm3 P) was prepared from potassium dihy- 
drogen phosphate; further standards were ob- 
tained by diluting this solution as required. 
Hydrochloric acid (5M), potassium antimony 
tartrate solution (O.O02M), ammonium hepta- 
molybate tetrahydrate solution (0.1 M), acetone 
and butanone were used. 

Analytical procedures 
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Table 3. Assignment of factors and their level values to the 
polarographic reaction system for phosphorus determi- 

nation in the 0A,,(45) matrix 

Column No. 

1 2 3 4 5 

Factor* 

Level? A B C D E 

1 0.50 2.00 0.50 0.00 3.00 
2 1.00 1.50 1.00 1.00 2.00 
3 1.50 1.00 1.50 2.00 1.00 
4 2.00 0.50 2.00 3.00 0.00 

*A: O.lM of ammonium heptamolybate tetrahydrate sol- 
ution (cm’); B: 0.002&f of potassium antimony tartrate 
solution (cm3); C: 5M of hydrochloric acid (cm)); D: 
acetone (cm’); E: butanone (cm’). 

tThe level value for each factor is (i) satisfied with the 
definition given in equation (A3); (ii) randomly arranged 
from low to high or vice versa. 

tartrate solution, and C cm3 of hydrochloric 
acid were added to a 25 cm3 volumetric flask 
and mixed well. Then D cm3 acetone with E cm3 
of butanone and 5 cm3 of standard phosphorus 
solution (100 pg/dm3) were added and mixed 
thoroughly for different experimental trials, the 
factors (A-E) were varied according to the level 
setting numbers shown in Table 3). Afterwards, 
the solution was diluted with de-ionized water 
to the mark, mixed well and an aliquot of the 
solution in volumetric flask was transferred to 
the polarographic cell. The polarogram from 
-0.30 to -0.80 V was recorded at a scan-rate 
of 250 mV/sec with an oscillopolarographic 
analyzer. The peak potential of the derivative 
curve was at -0.41 V as SCE, at which the peak 
currents of the different experimental trials 
[$@A)] were recorded and calculated as the 
response (y) for the four-level orthogonal array 
design. 

RESULT AND DISCUSSION 

On the basis of Refs l-4 five factors were 
considered in the present work: (i) the volume of 
0. 1M ammonium heptamolybate tetrahydrate 

Table 5. Worksheet of the Duncan’s multiple F test for 
the significant factors at different levels* 

SP (SSR at P = 0.05) 

2 (0.40) 3 (0.42) 4 (0.44) 

A r, (7.88) r, (8.82) r3 (9.01) r, (10.28)t 
B r, (7.44) r, (9.20) r2 (9.66) r3 (9.68) 
C r4 (7.19) r, (8.68) (9 46) r2 (10.66 t 
D r, (7.68) r, (8.83) :: (9:64) r, (9.84) 

*Any two level means not underscored by the same line 
are significantly different (P < 0.05). On the con- 
trary, any two level means underscored by the same 
line are not significantly different (P > 0.05). 

tSignificantly different from the other level means at 
P < 0.01, where SSRo3,.00,, is 0.54. 

solution (A); (ii) the volume of 0.002M potass- 
ium antimony tartrate solution (B); (iii) the 
volume of 5M hydrochloric acid (C); (iv) the 
volume of acetone (D) and (v) the volume of 
butanone (E). The position and four different 
level setting values of five factors in the 
OA,6(45) matrix are given in Table 3. Since no 
dummies were available, triplicate runs were 
carried out for each experimental trial to 
measure the error variance. 

After conducting all of the experiments, the 
mean of the response values (1) and their 
standard deviation (SD) obtained are given in 
Table 1. Using the formulae shown in Table 2, 
the ANOVA table including per cent contri- 
bution was constructed and given in Table 4. 
From Table 4 it is clear that all the factors 
except for E are statistically significant at 
P < 0.001, whereas no statistical difference is 
observed for the factor E (P > 0.1). The latter 
demonstrates that the peak current for the 
polarographic adsorptive wave of the PO:-- 
Sb(III)-Mo(V1) ternary heteropoly acid is not 
affected by the volume of butanone. In other 
words, the addition of the butanone does not 
enhance response value considered. Therefore, 
it is actually not necessary to add butanone 
in the polarographic reaction system for 
phosphorus determination. 

Table 4. An ANOVA table including per cent contribution for experimental 
responses in the OA,,(4’) matrix 

Source SS df MS F* ss PC( %) 

Mo(VI) (A) 35.10 3 11.70 48.75*** 34.38 17.63 

SbgI(IA,‘B) 40.46 76.15 3 3 25.38 13.49 105.75*** 56.21*** 39.74 75.43 20.38 38.68 
Acetone(D) 34.64 3 11.55 48.12*** 33.92 17.39 
Butanone (E) 1.12 3 0.37 1.54 0.40 0.20 
Error 7.55 32 0.24 11.15 5.72 
Total 195.02 47 195.02 100.00 

*Critical value is 6.96(***P < 0.001) and 2.27 (P < 0.1). 
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Moreover, from per cent contribution, it can 
be seen that the most significant effect contribut- 
ing to the response is C (38.68%), then in order 
is B (20.38%), A (17.63%), D (17.39%) and 
E (0.20%). The per cent contribution due to 
error (unknown and uncontrolled factors) is 
relatively low (5.72%). This means that no 
important factors and/or interaction between 
factors are omitted, so it is reasonable to neglect 
the interaction between factors in this work.18 

For those factors with significant influences, 
the Duncan’s multiple F tesP4 was implemented 
and the results obtained are shown in Table 5. 
From Table 5 it can be seen that (i) the best level 
means for factors A and C are at level 2, at 
which the level mean for either factor A or C is 
significantly different from that at other levels 
(P < 0.01); (ii) the best level mean for factor B 
is at level 3, but no significant difference is 
observed among level 1, 2 and 3 (P > 0.05) and 
(iii) the best level mean for factor D is at level 
4, but no significant difference is observed 
between level 3 and 4 (P > 0.05). 

The above conclusions mean that the rec- 
ommended conditions for the polarographic 
reaction system for phosphorus determination 
are 1.00 cm3 of ammonium heptamolybate 
tetrahydrate solution (O.lM); l.OG2.00 cm3 
of potassium antimony tartrate solution 
(0.002M); 1.00 cm3 of hydrochloric acid (5M) 
and 2.00-3.00 cm3 of acetone. No butanone is 
necessary. 

Furthermore, according to Appendix A, the 
effect for each factor at four different levels (E, , 
E, , E3 and E4) is calculated and given in Table 1. 
From the maximum difference between Ek and 
Ekf, it is clear that the most important factor is 
the factor C (3.48), then in order is A (2.40), B 
(2.23), D (2.18), and E (0.43). These results are 
similar to those obtained from the ANOVA 
table including per cent contribution. 

By substituting various Ek values given in 
Table 1 into equation (2), the polynomial value 
excluding /$, item (Y) for each experimental trial 
could be computed and the figures given in 
Table 1. It should be noted that since the effect 
for the factor E is relatively small and no 
statistical difference for this factor is observed 
(P > O.l), it should be incorporated into the 
error item and thus not be included in the Y 
item. In practice, the mean of the difference 
between jj and Y [(p - Y ), i = 16; see Table l] 
can be considered as the fi,, item. 

Therefore, the following third-order poly- 
nomial model containing four significant factors 
can be generated: 

y = 12.27 - 1 .484A - 0.644 : + 0.804 1 

$0.10&j - 0.684 ‘B - 0.304 ; - 1.29& 

- 1.064 ; + 0.354 :: + 0.82& - 0.244 :, 

- 0.044 6 + L. (3) 

For each experimental trial, by substituting the 
r#+ values [given in equation (A5) in Appendix 

Fig. 1. Response surface for the effect of O.lM of Mo(VI) and 0.002M of Sb(III) on the peak current 
of phosphorus at 1.00 cm3 of 5M of HCI and 2.79 cm3 of acetone. 
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Fig, 2. Response surface for the effect of O.lM of MO(W) and 5M of HCI on the peak current of 
phosphorus at 1.21 cm3 of 0.002M of Sb(l11) and 2.79 cm3 of acetone. 

A, it should be noted that the level settings (I%) 
for diRerent factors are varied with the level. 
numbers of the intersection as shown in Table 
l] into equation (2), the expected value (9) 
[polynomial value including jIO item] can be 
calculated and the figures are given in Table 1. 
Correspondingly, the random error item 
(E = y - 9) for each experimental trial is also 
calculated and given in Table 1. The results 
obtained show that the expected value for each 
experimental trial is in good agreement with the 
corresponding experimental value. The mean of 

the error item [{y’), i = 163 equals zero (see 
Table I), which indicates that the E item is an 
independent random variable from an N (0, cr 2, 
distribution. Therefore, the third-order re- 
gression equation given in equation (3) can 
adequately and accurately represent the de- 
scribed response surface. 

Furthermore, in order to preciseiy express the 
quantitative relationship between output re- 
sponse (y) and input variable values (Z,), 
equation (AZ) (shown in Appendix A) with the 
known zX and I& values should be substituted 

14 
13.5 

13 
12.5 

4 12 
2 11.5 
P 11 
e 10.5 
B 10 
4 9.5 
a” 9 

0.5 

Fig. 3. Response surface for the effect of O.lM of Mo(VI) and acetone on the peak current of phosphors 
at I .OO cm3 of 5M of HCI and i .21 cm3 of O.OOZM of Sb(II1). 
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2 

Fig. 4. Response surface for the effect of 0.~2~ of Sb(II1) and 5M of NC1 on the peak current of 
phosphorus at 0.96 cm3 of O.lM of Mo(V1) and 2.79 cm3 of acetone. 

into equation (3), then the following equation heptamolybate tetrahydrate solution (O.lM); 
can be concluded (ii) 1.21 cm3 of potassium antimony tartrate 

solution ~0.~2~); (iii) 1 .OO cm3 of hydrochloric 
y = - 19.65 + 33.392, + 17.8328 + 21.122, acid (5M) and (iv) 2.79 cm3 of acetone can be 

+ 1.272, - 26.562; - 11.7222, 
obtained. It is obvious that the above results 
are similar to those obtained from applying 

14.742; - 0.062 ‘D + 6.4021: + 2.402 ; Duncan’s multiple F-test. - 
Lastly, to confirm the validity of the optimiz- 

+ 2.802 :: - 0.042 :, + E. (4) ation procedure, additional experiments using 
the experimental conditions recommended by 

The response surface represented are displayed Duncan’s multiple F-test (A2, B3, C2, D4 and 
in Figs l-6. Moreover, according to the deriva- EJ were performed. The result demonstrated 
tive algorithm given in Ref. 11 the following that when compared with that results obtained 
optimum conditions (i) 0.96 cm3 of ammonium from 16 experimental trials in the 0A,6(45) 

Fig. 5. Response surface for the effect of 0.002M of Sb(II1) and acetone on the peak current of phosphorus 
at 0.96 cm3 of 0.1M of Mo(VI) and 1.00 cm3 of SM of HCl. 
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0.5 

Fig. 6. Response surface for the effect of 5M of HCI and acetone on the peak current of phosphorus at 
0.96 cm3 of O.lM of MO(W) and 1.21 cm3 of 0.002M of Sb(II1). 

matrix, the largest response value (13.72 + 0.75, 
n = 3) could be achieved. On the other hand, 
the theoretical value predicted by using 
equation (4) according to the best experimental 
conditions obtained from Duncan’s multiple 
F-test and the optimum conditions obtained 
from derivative algorithm are 13.48 and 13.62, 
respectively. Both data are in good agreement 
with the mean of the former experimental value 
(13.72). 

CONCLUSIONS 

Four-level orthogonal array design with the 
OA,,(4’) matrix provides a systematic pro- 
cedure which could be used to obtain the overall 
optimum within the range of experimental con- 
ditions investigated. When interaction effects 
can be neglected, owing to the orthogonality of 
the experimental design, the preplanned 16 ex- 
perimental trials can yield the same information 
as that obtained from the corresponding full 
factorial design which requires 45 = 1,024 exper- 
imental trials. By using the ANOVA technique 
including per cent contribution and the Dun- 
can’s multiple F test, a large amount of quanti- 
tative information on the significance of a factor 
and the control of the optimum range for a 
significant factor can be obtained. Furthermore, 
by means of the formulae given in Appendix A, 
the third-order regression equation representing 
the response surface can be easily established 

and thus the effects for the significant factors 
can be quantitatively estimated in the math- 
ematical model. 

Either polynomial model established with de- 
rivative algorithm or Duncan’s multiple F test 
can be used to decide the best/optimum exper- 
imental condition for each variable considered. 
However, the computational burden of the for- 
mer method is much larger than that of the 
latter one. Indeed, by using the former method, 
the optimum value can be precisely obtained. 
But in many cases it may not always be necess- 
ary to choose the best experimental conditions 
according to the optimum value acquired be- 
cause the departure from the optimum value 
obtained may not always cause the significant 
variation. For instance, in the present study, 
when the volume of potassium antimony tar- 
trate solution changed from 1.0 to 2.0 ml, 
according to equation (4), it can be calculated 
that for output response only 0.53 can be re- 
duced. It is obvious that the variation of 0.53 
can be neglected. For that reason, if no quanti- 
tative relationship between output response and 
input variable values is acquired, we rec- 
ommend using Duncan’s multiple F test 
instead of the polynomial model with derivative 
algorithm for estimating the best experimental 
conditions. 

Although four-level orthogonal array design 
was employed to optimize the polarographic 
reaction system for phosphorus determination 
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in the present work, as a chemometric opti- 
mization approach, four-level orthogonal array 
design has much broader potential appli- 
cability. It can be applied to the optimiza- 
tion of nearly all the analytical procedures 
such as the conditions for various spectrometric 
determination and flow injection methods, 
the reaction system of spectrophotometric 
and polarographic techniques, operation par- 
ameters of gas chromatographic and high per- 
formance liquid chromatographic analysis, and 
so forth. 
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APPENDIX A. Fstablisbment of the Polynomial Model and 
Estimate of the Regression Coefficient.@ 

First let us assume the following statistical model: (i) for a 
four-level factorial design, the polynomial model represent- 
ing the response surface can be expressed as a third-order 
regression equation: 

where 

z-z 

+,=y Y 

in equation (A2), assume that 

642) 

H, = Z, - Z,, = Z,, - Z,, = Z, - Z,, 643) 

then 2 = &I + z,2 + z,3 + zr4 
li 

4 
= Z.v, + 1.5H,. 

Therefore 

$I,, = - 1.5; & = -0.5; f$v3 = 0.5; &4 = 1.5; 

and 

644) 

(A5) 

(‘46) 

(ii) Suppose all the five columns in the 0A,,(45) matrix are 
assigned an independent variable, namely A-E, respectively. 
Meanwhile, suppose that there are no interactions between 
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variables, then a polynomial model representing a response 
surface can be expressed as 

Y =/&x&@Jx+x$~8uo:+ i Bxxxd:+c. 
X=A 

(A7) 

Moreover, suppose that 

~x=Bx~x+Bxx~:+Bxxx~:. (A8) 

Then, according to equations (A7) and (A8), the response 
y, for each experimental trial in the 0A,,(45) matrix can be 
described as follows: 

Y,=Bo+EAk+E~+Ec~+E~+EE*+t, (A9) 

where k represents the level setting numbers which are 
varied with the intersections in the OA,,(45) matrix. 6, is a 
statistical error which is an independent random variable 
from an N (0, a2) distribution. Therefore, 

(AlO) 

NOW, let us randomly select a factor at a level, e.g. factor 
C at level 3, according to the OA,,(45) matrix (shown in 
Table 1) and equation (A9), it can be concluded that 

R,,=y,+y,+y,+y,,=48,+ i J%k+ i &VI 
k=l k=l 

+4&-f i EDk+ i g,+(c,+~,+~,+~,). (All) 
k=l !i=, 

When combined with equation (A8), equation (Al I) can be 
rewritten as 

(AW 

Then, substituting equation (A6) and (AlO) into (Al2) will 
lead to 

Suppose that 

+ Bccc~ L). (A13) 

4Tcx=480+5 5 Bxx. (A14) 
X(K)-A 

equation (A13) can be rewritten as 

~c3=~c+Bc~c~+Bcc~~3+Bccc~~3. (A15) 

Correspondingly 

~cl=~c+Bc~c,+Bcc~:,+Bccc~~, (A16) 

~cz=~c+Bc~cZ+Bcc~~Z+BCcC~~2 (A17) 

~c4=~c+Bc~c4+Bcc~Z+Bccc~~~. (A18) 

Equation (A17) minus equation (A16), then combined with 
equation (A6), will lead to 

rcz - rcI = Bc - 2&c + 3.258,cc. 

Similarly 

rc3 - rc2 = PC + 0.W3ccc 

rc4 - rc3 = & + 28~~ + ~.WC~~. 

Consequently 

(A19) 

6420) 

6421) 

Bc = & {27(rc, - rc2) - (rc4 - rc, )I (A22) 

PCC = t {(rc4 - rc3) - (rc2 - rc, )I (~23) 

BCCC = L {2(rc4 - rcI ) - 6(rc, - rc2)I. (~24) 

By using a similar method, the following formula for each 
factor can be inferred that 

1 
Bx = 24 WYrx3 - TX21 - (TX4 - rxl 11 (~25) 

Bxx = f {(TX4 - k) - (TX2 - rxI )I (A26) 

Bxxx = $ {2(rx4 - rxl) - 6(rx, - rx2)I. (A27) 

Because rx, , rX2, rx3 and rx, can be easily calculated 
according to the results obtained from implementing four- 
level orthogonal array design, it is quite simple to establish 
a polynomial model as shown in equation (A7) for respre- 
senting the response surface of four-level orthogonal array 
design. 


